Protein-Bound Uremic Toxin Profiling as a Tool to Optimize Hemodialysis
نویسندگان
چکیده
AIM We studied various hemodialysis strategies for the removal of protein-bound solutes, which are associated with cardiovascular damage. METHODS This study included 10 patients on standard (3 x 4 h/week) high-flux hemodialysis. Blood was collected at the dialyzer inlet and outlet at several time points during a midweek session. Total and free concentration of several protein-bound solutes was determined as well as urea concentration. Per solute, a two-compartment kinetic model was fitted to the measured concentrations, estimating plasmatic volume (V1), total distribution volume (V tot) and intercompartment clearance (K21). This calibrated model was then used to calculate which hemodialysis strategy offers optimal removal. Our own in vivo data, with the strategy variables entered into the mathematical simulations, was then validated against independent data from two other clinical studies. RESULTS Dialyzer clearance K, V1 and V tot correlated inversely with percentage of protein binding. All Ks were different from each other. Of all protein-bound solutes, K21 was 2.7-5.3 times lower than that of urea. Longer and/or more frequent dialysis that processed the same amount of blood per week as standard 3 x 4 h dialysis at 300 mL/min blood flow showed no difference in removal of strongly bound solutes. However, longer and/or more frequent dialysis strategies that processed more blood per week than standard dialysis were markedly more adequate. These conclusions were successfully validated. CONCLUSION When blood and dialysate flow per unit of time and type of hemodialyzer are kept the same, increasing the amount of processed blood per week by increasing frequency and/or duration of the sessions distinctly increases removal.
منابع مشابه
Spontaneous variability of pre-dialysis concentrations of uremic toxins over time in stable hemodialysis patients
BACKGROUND AND AIM Numerous outcome studies and interventional trials in hemodialysis (HD) patients are based on uremic toxin concentrations determined at one single or a limited number of time points. The reliability of these studies however entirely depends on how representative these cross-sectional concentrations are. We therefore investigated the variability of predialysis concentrations o...
متن کاملDivergent behavior of hydrogen sulfide pools and of the sulfur metabolite lanthionine, a novel uremic toxin, in dialysis patients.
Dialysis patients display a high cardiovascular mortality, the causes of which are still not completely explained, but are related to uremic toxicity. Among uremic toxins, homocysteine and cysteine are both substrates of cystathionine β-synthase and cystathionine γ-lyase in hydrogen sulfide biosynthesis, leading to the formation of two sulfur metabolites, lanthionine and homolanthionine, consid...
متن کاملOptimal Wavelength Selection in Ultraviolet Spectroscopy for the Estimation of Toxin Reduction Ratio during Hemodialysis
Introduction The concentration of substances, including urea, creatinine, and uric acid, can be used as an index to measure toxic uremic solutes in the blood during dialysis and interdialytic intervals. The on-line monitoring of toxin concentration allows for the clearance measurement of some low-molecular-weight solutes at any time during hemodialysis.The aim of this study was to determine the...
متن کاملFunctional Genomic Analysis Identifies Indoxyl Sulfate as a Major, Poorly Dialyzable Uremic Toxin in End-Stage Renal Disease
BACKGROUND Chronic renal failure is characterized by progressive renal scarring and accelerated arteriosclerotic cardiovascular disease despite what is considered to be adequate hemodialysis or peritoneal dialysis. In rodents with reduced renal mass, renal scarring has been attributed to poorly filtered, small protein-bound molecules. The best studied of these is indoxyl sulfate (IS). METHODS...
متن کاملExploring Protein Binding of Uremic Toxins in Patients with Different Stages of Chronic Kidney Disease and during Hemodialysis
As protein binding of uremic toxins is not well understood, neither in chronic kidney disease (CKD) progression, nor during a hemodialysis (HD) session, we studied protein binding in two cross-sectional studies. Ninety-five CKD 2 to 5 patients and ten stable hemodialysis patients were included. Blood samples were taken either during the routine ambulatory visit (CKD patients) or from blood inle...
متن کامل